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The "method of compounding moments" devised by Van Kampen is used to 
study the spatial fluctuations in a model describing the irreversible formation of 
clusters. The reaction and diffusion constants in this model are chosen indepen- 
dent of the cluster sizes. For a monodisperse initial distribution explicit 
expressions are calculated for the equal-time and two-time correlation functions 
of the concentrations of m- and n-mers. For general initial conditions the fluc- 
tuations in the mass density are considered and a scaling theory is presented for 
the fluctuations at large times. Extensions to more general models are discussed. 

KEY WORDS:  Spatial fluctuations; reaction-diffusion; aggregation; Smolu- 
chowski theory. 

1. I N T R O D U C T I O N  

A very attractive method for studying reaction-diffusion systems is Van 
Kampen's "method of compounding moments. "(1) Its value lies in its trans- 
parancy and its straightforwardness. In reaction-diffusion processes the aim 
is to derive kinetic equations for the concentrations of the reactants and for 
their correlation functions. According to the "method of compounding 
moments," this derivation proceeds in two steps. First one discretizes the 
space, and one constructs a master equation for a cell model: the particles 
may jump from cell to cell, and react within each cell. The kinetic 
equations for the averages and correlation functions are then derived 
directly f rom the master equation for  the cell model. T h e  second  step is to 

t r a n s f o r m  b a c k  f r o m  the  cell p i c tu re  to  a c o n t i n u u m  f o r m u l a t i o n ,  r ep l ac ing  

the  cell  index  in the  k ine t i c  e q u a t i o n s  by  the  spa t ia l  c o o r d i n a t e s  r a n d  the  

o c c u p a t i o n  n u m b e r s  by pa r t i c l e  densi t ies .  

l Institut fiir Theoretische Physik C, RWTH Aachen, 5100 Aachen, Federal Republic of 
Germany. 
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In a previous paper (2) I used the "method of compounding moments" 
to study the spatial fluctuations in a model describing the irreversible 
aggregation of clusters. Here I present a new aggregation model, for which 
the kinetic equations derived in ref. 2 can be solved exactly. In these 
aggregation models, I distinguish clusters of all possible sizes: monomers, 
dimers, and, in general, "k-mers." The clusters are involved in two 
processes: they diffuse and they react with other clusters. I make one basic 
assumption, namely that clusters travel over large distances (meet many 
other clusters) before they finally react. Thus, I restrict consideration to 
aggregation processes that are reaction limited. 

What are the quantities of interest in these aggregating systems? Let us 
denote the density of k-mers by uk(r, t). First one has the average density 
(concentration) of k-mers, ck(r, t ) -  (uk(r, t)).  A second quantity of interest 
is the correlation function (Aum(rl, tl)Aun(r2, t2) ) which relates the 
fluctuation Aura = Urn--(Urn) at position rl and time tl to the fluctuation 
Aun at r2 and t2. Throughout I adopt the convention that t 2/> tl ~> 0. With 
the use of the method of compounding moments, one can derive kinetic 
equations for the concentrations and the correlation functions. These 
derivations have been given in ref. 2; here I quote only the results. 2 

Before I address the fluctuations, I consider first the macroscopic law 
for the concentrations ck(r, t). For general initial distributions ck(r, 0), the 
concentrations satisfy an infinite set of coupled nonlinear reaction-diffusion 
equations that is far too complicated to be solved exactly. This is unfor- 
tunate, since we are interested in the fluctuations about c~(r, t), and the 
fluctuations can be calculated only after the macroscopic law has been 
solved. However, there is one important special case where the problem 
becomes relatively simple, namely if the initial distribution is spatially 
uniform: ck(r, 0) = ck(0). In this case the solution Ck(r, t) of the reaction- 
diffusion problem is also spatially uniform: cg(r, t)=ck(t), where ck(t) 
satisfies Smoluchowski's coagulation equation (3-5) 

1 
?k(t)=~ ~ KiF,(t) cj(t)-ck(t) ~ Kkjcj(t), k = 1 , 2  .... (1.1) 

i + j = k  j = l  

Here K~ is the rate constant for the reaction between i- and j-mers. Note 
that the diffusion constants Dk do not enter in the macroscopic law (1.1). 
Equation (1.1) has the property of mass conservation: ~"~c= 1 kc~(t)= const. 
Throughout this paper I set this constant (which represents the mass 

2 Actually, in ref. 2 I considered a model describing a phase transition (gelation) that required 
a special treatment. In this paper I do not  consider the post-gel stage of gelling models, so 
that one can set the gel density equal to zero in the results of ref. 2, Section 2. This yields the 
results to be quoted below [Eqs. (1.1)-(1.5)]. 
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density) equal to unity. Moreover, I take the thermodynamic limit, and 
consider the case of an infinite volume. 

Next consider the correlation functions, where one distinguishes 
correlations at equal and at different times (corresponding to t 2 = t~ and 
t 2 > tl, respectively). The present choice of a uniform initial distribution 
implies that the correlation functions depend only on the relative coor- 
dinates r = r ~ -  r2, or (more precisely) on the modulus Irl. The correlations 
at equal times can most conveniently be expressed in terms of the so-called 
factorial cumulants Em,(r, t), (~) or, rather, in their Fourier transform 
F~n(q, t): 

Emn(r, t) =- (3Um(rl, t) J u , ( r : ,  t ) )  -- 6~,6(r) era(t) (1.2a) 

Fm.(q, t) - f dr [exp(iq" r ) ]  Em.(r, t) (1.2b) 

The equal-time correlation functions can be determined from (1.2) once 
Fmn is known. The kinetic equation for F,.n is 

L otFmn(q, t ) =  ~ (AmjFj, + AnjFmj)- K,,nemC . -  (Dm + D,) q2F,,n 
j = l  

(1.3a) 

where Dk is the diffusion constant of a k-mer and Akj is defined as 

Akj(t) = -- ~ K~ci(fik + 6jk -- 6i+j,k) (1.3b) 
j = l  

Equation (1.3) is to be solved with the initial condition F,,n(q,O)-- 
--6mnCm(O). An important special case of (1.3) is obtained for q = 0. In this 
case Finn(q, t) reduces to the nonspatial factorial cumulants e,~,(t) studied 
in refs. 6 and 7. From (1.2) it follows that Fmn(0, t) has the interpretation of 
an integrated correlation function: it shows how the fluctuation ZJUm(r , t) is 
correlated with the fluctuation in the total number of n-mers in the system. 

The two-time correlation functions also depend only on r = r~ - r 2  and 
hence can be denoted as 

/Chin(r; t2, /1) ~ (AUra(r1, tl)z]un(r2, t2)) (1.4) 

Again it is more convenient to consider the Fourier transform l~nm of ~.,~, 
which satisfies a set of coupled ordinary differential equations 

0 
-~t~,m(q;t, tl) = ~ Anj~jm(q;t, tl)--Dnq2~m(q;t, tl) (1.5a) 

j = l  
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to be solved with the initial condition 

grim(q; tl, t l)= Fmn(q, tl) + C~m~c,(tl) (1.5b) 

The condition (1.5b) simply states that the correlation functions for t 2 > tl 
should reduce to those for t2 = tl in the limit t2 ~, tl. 

In this paper we cQnsider one particular model, corresponding to 
reaction and diffusion constants independent of the cluster sizes: 

K ~ = I ;  Dk=D ( i , j , k = l ,  2,...) (1.6) 

The macroscopic law for this model, i.e., Eq. (1.1) with K U = 1, has a long 
history. The properties of the solution ck(t) were studied by 
Smoluchowski (3) and subsequently by many authors, including van Kam- 
pen (see the acknowledgment in ref. 8). The fluctuations in this model were 
studied in ref. 7 for the spatially homogeneous ("well-stirred") case. The 
spatial fluctuations in the model K U = 1 have not been studied before. 

The plan of this paper is as follows. Sections 2 4  are devoted to the 
equal-time correlations. In Section 2 I solve Eq. (1.3) for a general (but 
spatially uniform) initial distribution ck(0). The solution is formulated in 
terms of the generating function of F,,n. An explicit expression for Fmn 
(and Emn) is given in Section3 for monodisperse initial conditions, 
ck(0) =6~1. A novel scaling behavior of Fmn and Emn, independent of the 
initial conditions, is found in Section 4. Section 5 is devoted to the two-time 
correlation functions. In Section 6 I discuss the behavior of the density 
fluctuations. This section is generally valid, provided that Dk=D: the 
conclusions hold for general initial conditions and general reaction rates 
K~. Further extensions are discussed in Section 7. 

2. EXACT S O L U T I O N  OF EQ. (1.3)  FOR GENERAL INITIAL 
C O N D I T I O N S  

The kinetic equation (1.3) for the Fourier-transformed factorial 
cumulants Fmn(q, t) can be solved with the use of generating function 
techniques. From the structure of Eq. (1.3) it is clear that Fmn(q, t) can be 
calculated only after the macroscopic law has been solved. For this reason 
I recall some of the properties of ck(t) first. 

The macroscopic law (1.1), with rate constants K o. = 1, can be solved 
in terms of the generating function of the concentrations ck(t), 

F(x, t) = ~ ek(t)(e k~- 1) (2.1) 
k - - 1  
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The generating function F(x, t) satisfies a simple ordinary differential 
equation OF/~t = F2/2, which has the solution 

F(x, t) = v(x)/[1 -- �89 3 (2.2) 

if v(x) - F(x, 0). More details concerning ck(t) can be found in refs. 3 and 9 
or in appendix A of ref. 7. 

To solve the kinetic equation (1.3) for Finn(q, t) with K~= 1 we 
introduce the generating function 

H(x, y; q, t) = - ~ Fm~(q, t)(e mx-  1)(e ny-  1) (2.3) 
m , n  

which satisfies the differential equation 

0H 
- [F(x, t) + F(y, t) - 2Dq 2 ] H -  F(x, t) F(y, t) (2.4a) 

~t 

The initial condition for Eq. (2.4) follows from the initial value Finn(q, O)= 
--6mnCm(O) of Fro, as 

H(x, y;q, O)= v(x) + v ( y ) -  v(x + y) (2.4b) 

For fixed values of x, y, and q, Eq. (2.4a) is an ordinary differential 
equation with respect to t, and may readily be integrated with the use of 
(2.2). The result is 

H(x, y; q, t ) =  {[1 - � 8 9 1 8 9  -2 e-2Dq2'V(x, y; q, t) (2.5a) 

where I introduced 

V(x, y; q, t) 

=- H(x, y; q, 0)-- v(x) v(y) dz 

x { 1 - � 8 9  +�88 v(y)} e 2Dq2~ (2.5b) 

and H(x, y;q, 0) is given by (2.4b). Equation (2.5) represents an exact 
expression for Finn, or Emn, in terms of its generating function. 

3. EXPLICIT  F O R M  OF Emn FOR M O N O D I S P E R S E  IN IT IAL 
C O N D I T I O N S  

The special case of monodisperse initial conditions (monomers only at 
t = 0 )  corresponds to Ck(0)=6kl or v ( x ) = F ( x , O ) = e  x -  1, so that in this 
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case Eq. (2.4b) can also be written as H(x, y; q, 0 ) = - v ( x ) v ( y ) .  As a 
consequence, Eq. (2.5) assumes the form 

H(x, y; q, t) 

v(x) v(y) 
[1 - ltv(x)] 2 [1 - �89 2 

x {/~l(q, t) +/~2(q, t)[v(x)+v(y)] +/~3(q, t) v(x) v(y)} (3.1a) 

where the coefficients/~i(q, t) (i-- 1, 2, 3) are defined as 

fli(q, t) = ~il exp( -2Oq2t )  

+ c&(-�89 lexp[-2Dq2(t- -r)] ,  i = 1 , 2 , 3  (3.1b) 

The results (3.1) for the generating function H can readily be inverted to 
yield an explicit expression for Fmn(q, t). One finds that 

Fm,(q, t) = [el(q, t) + ~2(q, t)(m + n) + %(q, t) mn] Cm(t) c,(t) (3.2a) 

where the coefficients a = (cq, ~2, ~3) are linearly related to the coefficients 
P =  (/~1,/~2,/~3) in (3.1), namely 

~t(q, t) = A(t).  [i(q, t) (3.2b) 

where the matrix A(t) is given by 

[ t 4 / 
A ( t ) = - [ t ( 2 + t ) ]  -2 / - 2 t 3  

\ 4t 2 

8t2(1 + t) 16(1 + 0 2 \ 
| 

- 4 t ( 2 + 3 t )  - - 1 6 ( 1 + t ) ~  

16t 16 ] 

(3.2c) 

The simplest way to see that (3.2) is indeed the inverse of (3.1) is to start 
from (3.2) and calculate its generating function (2.3). One then finds (3.1a) 
as the result. 

The factorial cumulants Emn(r, t) can be obtained by inverse Fourier 
transformation of Fmn in (3.2). It follows immediately from (3.2a) that 
Emn(r, t) has the form 

Em,(r, t)= [Aa(r, t) + A2(r, t)(m + n) + A3(r, t) mn] Cm(t) c,(t) (3.3) 

where A(r, t )=  A(t). B(r, t), and B(r, t) is the inverse Fourier transform of 
I~(q, t) in (3.1b): 

(~il g(r; 4Dt) + I t dr ( - 1 i -  Bi(r, t) ~r) 1 g(r; 4 O ( t -  z)) (3.4) 
Jo 
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Here I introduced the d-dimensional Gaussian distribution, 

g(r; cr 2) = (2~a2) -a/2 exp( - r2 /2a  2) 

The equal-time correlation functions follow immediately from (1.2a). 

(3.5) 

4. N O V E L  S C A L I N G  B E H A V I O R  OF THE S P A T I A L  
F L U C T U A T I O N S  

Consider again general initial conditions and focus on the scaling limit 
(S). The scaling limit is the limit where the average cluster size diverges 
[s(t) --* oo ] and the cluster size m --* 0% with the ratio z =- m/s(t)  fixed. As 
the definition of average cluster size I choose s(t) = Z ; =  1 kZck(t) �9 Different 
definitions are possible but lead to qualitatively the same results. (1~ The 
average cluster size becomes large at large times; in our case one finds that 
s(t) ~ t as t ~ oo. 

In the scaling limit one finds that the concentrations ck(t) approach a 
simple scale-invariant form, independent of the initial conditions (see, e.g., 
Appendix A of ref. 7): 

ck(t) s s ( t )_20 (k / s ( t ) )  (4,1) 

where the scaling function ~b(z) is given by q~(z)=4e -2z. Clearly, if Ck(t) 
shows scaling behavior, then so does its generating function F(x, t) in (2.1). 
The appropriate definition of the "scaling limit" of a generating function 
follows from (2.1) as s(t)--* oo and x-*0 ,  with the product p==--xs( t )  
fixed. A question that presents itself is: would Emn and Finn and the 
generating function H also show simple scaling behavior, independent of 
the initial conditions? 

This question can be investigated along the lines of ref. 7 (Section 4.3), 
and one finds that the answer is positive. For instance, consider the 
generating function H in (2.5). The scaling behavior of H can be expressed 
in terms of the three scaling variables pl -= - x s ( t ) ,  p2 = - - y s ( t ) ,  and 
0 =- 2Dq2t. One finds that 

H(x,  y; q, t) s ,  s ( t )_ l  gt(pl,  P2, O) (4.2a) 

where the scaling function gt is given by 

16plP2 
r//(pl, /32, 0 )=  (2 + pl)2 (2 + p2) 2 

x d u [ l + l ( p l + p 2 ) u + � 8 8  o(1 ~) (4.2b) 
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The result (4.2) is valid both if q and if 0 is kept fixed when taking the 
scaling limit. Physically, however, the latter case is more interesting, since q 
values of the order of (Dt ) - l /2  correspond to distances of the order of 
(Dt)  m. Thus, the generating function H approaches a simple scaling form 
in the product space (x, y, q). Note that (4.2) is independent of the initial 
conditions. 

The result (4.2) can now be inverted to yield a scaling form for 
Finn(q, t). The simplest way to obtain the result is to employ the fact that 
(4.2) is independent of the initial conditions and take the scaling limit in 
(3.2), which was derived for monodisperse initial conditions. As the result, 
one finds that Fmn approaches a relatively simple scaling form, 

Fmn(q , t) s , s(t)_3 q~(zl, Z2, 0) (4.3a) 

where Zl - m/s(t) ,  z2 - n/s(t), and 

~(zl ,  z2, 0) = [al(0) + az(O)(zl + z2) + a3(0) z lz2]  ~b(Zl) ~b(z2) (4.3b) 

The coefficients a = ( a l ,  a 2, a3) are  given by a ( O ) = L . b ( O ) ,  where the 
matrix L and the vector b are defined as 

1 

L = - -  - - 3  - ; bi(0)= d u ( - 2 u ) ' - l e  -~ i = 1 , 2 , 3  

4 
(4.4) 

The scaling law (4.3) is valid for general initial conditions and could, if 
desired, be derived directly from (4.2). 

A scaling form for Emn can  be obtained by Fourier inversion of (4.3). 
In terms of the scaling variable R -  r/(4Dt)  1/2 one finds that 

Emn(r , t) dr s ~ s ( t ) -3  t/(Zi, Z2 ' R) dR (4.5a) 

where the scaling function t/is given by 

t/(Zl, z2, R) = [AI(R ) + A2(R)(z 1 + z2) + A3(R ) ziz2] ~b(zl) ~b(z2) (4.5b) 

with A(R) = L .  B(R) and 

Bi(R) = du (2rcu) -a/2 e-R2/2u[-2(1  - u ) ]  i- i, i =  1, 2, 3 (4.5c) 

We conclude that, at least for the model K o. = 1, a relatively simple scaling 
behavior emerges in the scaling limit. Note that the scaling behavior 
occurs in the product space (m, n, r), and that it holds for general initial 
conditions. 
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5. THE T W O - T I M E  CORRELATION F U N C T I O N S  

I restrict consideration to monodisperse initial conditions. The 
correlation function ~Cnm, or, rather, its Fourier transform ~,m, is deter- 
mined by Eq.(1.5). To solve this equation with K a = l  and D k = D  I 
introduce new functions 

a,m(q; t, tl) - ~?nm(q; t, t I ) e Dq2('- ,,) (5.1) 
satisfying 

O 
~ a,,m(q; t, t l ) =  ~ A,sajm(q; t, tl) (5.2) 

j=1  

The initial condition for a,,,, at t = t~ is the same as for i ,m [see (1.5b)]. 
The problem (5.2), with A,j  given in (1.3b) and Ku= 1, has already 

been solved in ref. 7. The solution is that anm is linearly related to its initial 
value at t = t~, i.e., 

a.m(q; t, t l ) =  ~ Y.j(t ,  tl) aim(q; tl, tl) (5.3) 
j = l  

where the evolution matrix Ynj is given by 

Y.j(t ,  tl) = Qn_j(t ,  tl) - Q.(t ,  t~) (5.4a) 

Q,(t,  t l ) =  (1 +�89 2 (n + 1) c , + 1 ( t ) -  t,(1 +�89 

+ (�89 2 ( n -  1) c ,_ l ( t )  (5.4b) 

We recall that the matrix Y,j has the properties 

Y,,j(t, tl) j c j ( t l ) = n c , ( t ) -  Q,(t ,  tl) (5.5a) 
j = l  

Y,j(t ,  t l )Cy(ta)= R~(t, t~) (5.5b) 
j - - I  

where R,(t ,  t~) is given by 

R,(t ,  tl) = - �89 + t l ) ( t -  2n)/(2 + t) + t~(2n - 2 - t)/t] c,(t)  (5.6) 

Combination of (5.1) and (5.3)-(5.5) with the initial condition (1.5b) of ~,,, 
and the explicit form (3.2) of Fro, finally yields the following impressive 
expression for the (Fourier-transformed) correlation functions ~,m: 

Knm(q; t2, t l ) =  e-Dq2(t2-tz){[O~l(q, t l ) +  mc~2( q, t l )]  R,(t2,  tl) 

+ [c%(q, t~) + mc~3(q, tl)][nc,,(t2) -- Q,,(t2, t l )]  

+ r,,m(t2, t,)} era(q) (5.7) 
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where ~t(q, t) is given in (3.2b). This result for in,,, may readily be inverted 
to yield an explicit expression for the two-time correlation functions 
Xnm(r; t2, t~). The outcome has the same form as in (5.7), but c~i(q, t~) 
exp [ -Dq2( t2  - t~)] is replaced by Ai(r; t2, tl), which is defined as 

A(r; t2, t l ) =  A(tl)" B(r; t2, tl) (5.8a) 

Bi(r; t2, t~) = 6ii g[-r; 2D(t~ + 82) ] 

+ ~ d z ( - z / 2 ) i - l g [ r ; 2 D ( t ~ + t 2 - 2 z ) ]  (5.8b) 

and the bare factor exp[- - Dq2(t 2 -- t 1)] (which multiplies Ynm) is replaced 
by g[r;  2D(t2 - t~)]. 

6. F L U C T U A T I O N S  IN T H E  D E N S I T Y  

A quantity of considerable physical interest that deserves a separate 
discussion is the fluctuation in the mass density. The correlations at 
different times are described by the two-time correlation function 

p(r;t2, t l ) -  ~ mmCmn(r;t2, tl) , t2>~t 1 (6.1) 
m ,  ~t 

The equal-time correlation function p(r, t) is obtained from (6.1) by setting 
t2 = tl = t. The Fourier transforms of p(r; t2, tl) and p(r, t) will be denoted 
by tS(q; t2, tl) and ~(q, t), respectively. 

There exists a very simple relation between the Fourier transforms 
fi(q; t2, tl) and iS(q, t), provided that Dk = D. This may be seen from (1.5a) 
by multiplying with mn and summing over all m and n. The result is 

0 
~/~(q; t, t l ) =  -Oq2#(q;  t, tl) (6.2) 

which may readily be integrated to yield 

~(q; t2 ' t l )= e Dq2(t2 t~l~(q, tl) (6.3) 

Similarly, one can derive a simple expression for ~(q, t) if one uses the 
relation between ~(q, t) and Fmn(q, t), i.e., 

~(q, t )=  ~ ran[Finn(q, t)+ 6mnCm(t)] (6.4) 
m , n  
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It follows from (1.3) that 

~3t ~(q' t) = -2DqZ[~(q, t) - Mz(t)] (6.5) 

where m2(t ) = ~2~_1 kZck(t) is the second moment of ck(t). Equation (6.5) 
has the solution 

~(q, t) = M2(O)(1 - e--2Dq2t) q- fO dt' 3;/2(t')[1 -- e -2Dq2(' ")] (6.6) 

Fourier inversion of (6.6) yields an expression for p(r, t), 

p(r, t) = -M2(O) g(r; 4Dt) 

- dt' ~/2(t') g(r; 4 D ( t -  t')) + Mz(t) 6(r) (6.7) 

Similarly one finds from (6.3), in combination with (6.6), that 

p(r; t2, t l ) =  -M2(0)  g(r; 2D(t2 + tl)) 

_ .~tl dt' ~[2(t') g(r; 2D(t 2 + t l -  2t')) 

+ M2(t ) g(r; 2D(t2 - tl)) (6.8) 

Here g(r; a2) is the Gaussian distribution, defined in (3.5). I stress that Eqs. 
(6.2)-(6.8) are generally valid, provided that Dk = D, i.e., these equations 
hold for general reaction kernels K o and general initial conditions. 

Next I specialize for Ki~ = 1, and consider the limit of large times. This 
limit is of particular interest, since one expects that the density fluctuations 
become large as t-~ oo. In addition, we keep 0 = 2Dq2t fixed. Since for 
K~ = 1 (and general initial conditions) it holds that 3;/2( 0 = 1 (all t > 0), it 
follows from (6.6) that the density fluctuations increase linearly in time as 
t ~ o o :  

~(q, t) s ,  t (O-  1 + e ~ (6.9) 

This shows that, at large times, the density fluctuations diverge at all length 
scales. I remark that this conclusion, that the density fluctuations diverge 
as t ~ o% holds quite generally for any nongelling model Kv. This follows 
from (6.6) or (6.7): the only requirement is that M2(t) diverges as t ~ oo, 
which happens in any nontrivial model for irreversible aggregation. 
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7. EXTENSIONS 

How special is the model (1.6) discussed in this paper? To investigate 
this question, concentrate on the scaling laws found in Section 4 and 
consider the large class of models with the property that the rate constants 
K(i, j )  are homogeneous functions of the cluster sizes: K(i, j )  = a ZK(ai, aj) 
for all a > 0. Could it be that scaling laws like (4.3a), (4.5a) are generally 
valid for such homogeneous kernels? 

First consider the case where the diffusion constants are given by 
Dk = D for all k. In this case it is relatively easy to show, along the lines of 
ref. 7, Section 7.2, that the scaling behavior (4.3a), (4.5a) with 0 = 2Dq2t is 
indeed consistent for all nongelling homogeneous kernels with 2 < 1. Note 
that this scaling behavior occurs in the product space (m, n, q) or (m, n, r). 
For the nongelling models with 2 = 1 and the gelling models with 2 > 1 the 
result is very simple. In this c a s e  Finn ---r emn(t), o r  Emn ---r emn(t ) 6(r), where 
emn are the nonspatial factorial cumulants. Thus, for ,~ i> 1, all correlations 
become local in the scaling limit. These results for 2/> 1 may be verified 
explicitly on two exactly soluble models, (2) namely K~= 0" and Kij= i+j .  

Next consider the case of general diffusion constants Dk, where we 
assume that Dk ~ Dk ~ as k ~ ~ for some ~/> 0. In this case one finds the 
same scaling laws (4.3a), (4.5a) if 2 < 1, provided that the scaling variable 0 
is replaced by 0~ - 2Dq2t/[s(t)]L The result for 2 ~> 1 remains unchanged. 
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